Design Engine
Training Classes/Tutorials for Designers, Engineers, & 3D Professionals


Google+

Industry News

February 9th, 2012

Revolutionizing Night Vision in Lexington

Imagine you could see through the smoke, haze and darkness caused by structure fire and accurately locate people trapped among the debris and save their lives.

To do this, your eyes would need to see far beyond our limited capacity to see colors deeper than red. You would have to see the always available radiation emitted in what is categorized as the far-infrared. Infrared radiation is more familiar as “heat,” which you can feel but cannot see it with the unaided eye. Far-infrared refers to a band of radiation that can pass through not only smoke but through the atmosphere itself.

Now, imagine once more that you are on a space-platform above the Earth and when you look down at the night-time unlit sphere of Earth you can define the magnificent continents and oceans of our planet.

Do such eyes exist? Yes, right here in Lexington in the BAE Systems group located at 2 Forbes Road.

On a recent afternoon, Peter W. Norton, technical director for survivability and targeting solutions at BAE Systems, sat down to discuss revolutionizing night vision.

Prompted by his master’s thesis advisor, who was aware of the breakthrough detector activities at the facility, Norton joined the company in 1985, straight out of Tufts University. At that time the facility was owned by the Honeywell Corporation, the company that initially sponsored the far-infrared detector research.

Norton’s technical leadership was invaluable both in optimizing the flagship, extremely high-performance mercury-cadmium-telluride (MCT) detector arrays that operate at very low temperature and the newer breakthrough microbolometer detector arrays that operate at room temperature. If the term “arrays” seems unfamiliar, modern TV screens consist of arrays of devices such as light-emitting diodes (LEDs) to produce the television images.

Development of the microbolometer detector was driven by technical issues inherent in MCT material that requires operating temperatures hundreds of degrees below 0 degrees Fahrenheit. With cooling comes bulky size and high cost. The operating temperature is really cold. A tennis ball at that temperature dropped to the floor would explode into a hundred pieces.

However, as Norton is quick to point out, the MCT detectors have been a highly successful product. In fact, where cooling can be efficiently provided the versatile detectors fulfill a diverse range of commercial, industrial and military applications. Most importantly, they can be tuned to sense different regions of the infrared by varying the percentage of mercury in the compound. The result is a full line of BAE-manufactured MCT detector arrays for use in the guidance systems of Maverick air-to-air missiles, NASA space-born applications and night vision sensors for the United States Army.

The compound mercury-cadmium-telluride may also seem a bit mysterious, but mercury, cadmium, and tellurium are integral to our daily life. A tiny amount of mercury is found in every compact fluorescent bulb, cadmium is a key component in nickel-cadmium batteries and tellurium is used to make the ubiquitous rewritable optical discs.

In contrast, the microbolometer uses the material vanadium-oxide. This material is widely used in the manufacture of sulfuric acid. However, its ability to produce large changes in resistance as a result of very small changes in temperature makes it an ideal material for far-infrared microbolometers.

As the years passed, Norton moved the MCT product line to more efficient and more cost effective manufacturing processes through the use of advanced device design. All the while he maintained his desire to greatly expand far-infrared applications through the design of a hand-held far-infrared camera that operates at room temperature using a battery for power.

The problem to be solved concerned the development of high performance microbolometers coupled to tiny, low-power electronic read-out chips.

Norton’s patience was rewarded as semiconductor technology eventually provided the necessary chips called a readout-integrated-circuit (ROIC). An ROIC can be custom designed to the required length of two-thousands of an inch. That is about the diameter of a human hair. In this design, the tiny vanadium oxide detectors are electrically connected to the ROICs to create an extraordinary far-infrared array.

At this writing, over one-hundred thousand microbolometer-based cameras are in use throughout the world. What does the future hold? Norton envisions a far-infrared camera the size of a cell phone.

Now, that’s what I call a revolution.

Article Written By: Jay J. Schlickman


About the Author

Design-Engine





Design Engine Industrial Design Training Pro Engineer
 
 

 

Die-Casting — an Overview

(Above image courtesy of Metal Technologies) Die Casting Die Casting is a process in which molten metal is forced under high pressure into a mold cavity. The molten metal is is forced into a split metal die. Certain metals are ...
by Bart Brejcha
0

 
 
Raffle Prizes

Peoria PTC User Group – Bradley University

We at Design Engine had such a great time putting this event together with Bradley University. It was great having everyone get together and talk about design, engineering, and PTC. Each presentation ran about an hour. Here is ...
by Scott Froemming
0

 
 

2018 Chicago Auto show

I was fortunate to be able to attend the Chicago auto show media preview days. With that, photographers were able to walk through the floors and take pictures of the vehicles without fighting through crowds or taking dozens of ...
by Bart Brejcha
0

 

 
The StarWars BB8 replica

Bridging the Gap: Bridgewater Studio Brings Fantasy to Reality

Let me just start by saying, this place is awesome! Selfishly, I had wanted to set up a tour to play with their awesome BB8 replica as the nerdery is strong with me, but when I visited Bridgewater Studios I got much more than I...
by Bart Brejcha
0

 
 
skeleton part for creating the welded bicycle & jig components

Top Down Design: And its History

  Brief History of Top Down Design It all starts with Mil Spec standards. “MilSpecs”, are used to help achieve standardization objectives by the U.S. Department of Defense.  Part of  that specification basica...
by Bart Brejcha
0

 



0 Comments


Be the first to comment!


You must be logged in to post a comment.